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MOW and SADOWSKY

DETERMINATION OF THE CRITICAL TORQUE INDUCING

BUCKLING IN A TWISTED SPHERICAL SHELL
SUBJECT TO INTERNAL OR EXTERNAL PRESSURE

C. C. MOW and M. A. SADOWSKY
WATERVLIET ARSENAL

WATERVLIET, NEW YORK

PROBLEM: The problem is illustrated by Figs. 2, 3 and 4. A
spherical shell is twisted by two equilibrating torques applied by
means of flanges at the poles of the sphere. The problem consists in
determining the critical value (buckling value) of the torques and in
analyzing the shape of the buckling impression (furrow) appearing
near the flanges as buckling deformation. Internal pressure p may
be present in the shell.

TOTAL BUCKLING VS. LOCAL BUCKLING: In case of a straight rod
buckling under compression we have an example of total buckling.

Every inch of the rod is deformed into a curved shape. There is no
region of conspicuous concentration of deformation as against a region
of relative absence of deformation. Every part, big or small, of the
rod is engaged in deformation. in this sense, we call it a case of
total buckling.

In case of spherical shells we may observe an entirely
different picture: that of local buckling. By applying a negligibly
small effort, a very thin spherical brass shell can be pushed in
locally forming a combination of 2 spherical caps: a big cap of the
undisturbed original sphere and a small cap in buckled position (Fig.l).

THE EXPERIMENT: LOCAL CHARACTER OF BUCKLING IN TORSION: Experi-
ments made at the Watervliet Arsenal Laboratories have shown that the
huckling of a spherical shell in torsion begins as local buckling con-
centrated close by the torque-transmitting flange of the torque pro-
ducing machine. The shape of the buckled area is oblong-elliptic,
stretching in an oblique direction from the edge of the flange. The
buckled area resembles a fold or rather a furrow. Fig. 2 shows in a
drawing the initial stage of buckling. Figs. 3 and 4 are photographs
of more advanced stages in which the furrow is conspicuous enough
to be seen and recognized in a photographic reproduction.
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OUTLINE OF' BUCKLING ANALYSIS BY THE ENERGY MTHOD: Buckling
equations are essentially energy balance equations. They state that
the strain energy accumulated prior to the onset of buckling has

reached a level sufficient to do the work necessary to produce the
buckled shape. The external forces and moments pitch in and help in

the performance of that work. The buckling equation of our problem
will consist of an accurate balance of strain energy available for

release through buckling and the work clone by the external efforts

on one side, and the energy required for infusion in the critical area
to make it buckle, on the other side.

Each item mentioned above can be computed analytically. The

strain energy of a shell consists of 2 parts: V 1 , the strain energy
due to the stretching of the middle surface, and V2, the strain

energy due to bending of the middle surface. The general principles
for the computation of V I and V 2 have been established by A.E.H.

Love and introduced to engineering analysis by S. P. Timoshenko. We
will use methods of classical differential geometry on that occasion.

The experiment shown in Fig. 8 will lead us to a reasonable assumption
concerning the character of the local buckling process. From there on,
we will arrive at the results by purely mathematical processes, making

no further assumptions to suit the situation.

DIFFERENTIAL GEOMETRY OF THE BUCKLED SPHERICAL SHELL: We will use

polar (spherical) coordinates 'r ,O,' defined by

~g ~rsint

z=rp

in which

p = Cosa Sill=

Let a be the radius of the middle surface of the shell. A point

P on the middle surface has polar coordinates

Let the polar components of the displacement vector of P be

U r-

%=.
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in which

are dimensionless functions of 9and We will denote their
derivatives with respect to e and by subscripts, such as in

THE BASIC STRESS FIELD: The stress field in the twisted shell
at the critical value of the torque T prior to buckling is called
the basic stress field. Its knowledge is important because in buck-
ling a part of its strain energy is released for the formation of the
buckled shape. The determination of the basic field, meaning the
determination of all displacements and stresses in a spherical shell
of radius a and thickness b under the action of the torque To is
a problem of 3-dimensional mathematical theory of elasticity. The
solution, in polar coordinates r , G , c reads:

2 TTr'O

We note that the only polar stress component that does not
vanish is the shearing stress
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THE BUCKLING EQUATION: The buckling equation is an energy balance
stating that the strain energy of the buckling deformation comes from
two sources: from work done by external forces and from an influx
of strain energy of the basic stress field. It can be found by system-
atically applying the mathematical theory of surfaces and space curves
(differential geometry)to the occasion and it reads in the case when
there is no internal pressure in the shell as follows:

2 Tr aL °)

+_ +

uh _((6+ ._-)P

p /

-V
2a

1 3
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CHARACTERISTIC ASSUMPTIONS: The problem of solving the buckling
equation consists of determining 3 functions 0((G ) l o0t) I

I (e(P) compatible with boundary cnnditions which will minimize the
value of the torque To  . Inspecting the structure of various inte-
grals appearing we see that the bending energy (term with the coeffi-

cient D) depends on C alone. This points to a prominence of the
function 0(0,) as compared with R(0,)) and Y(,P) . We now
make our first characteristic assumption: we assume

We drop from the bending energy integral all terms inOt &e and ce4
This is the second characteristic assumption.

GEOMETRY OF THE BUCKLING FURROW ON A SPHERICAL SHELL: The basic
guidance for judgment is given by the photographs Figs. 3 and 4 show-
ing experiments made at the Watervliet Arsenal Laboratories with
spherical shells buckling in torsion. Buckling begins as a localized
effect concentrated close by the torque-transmitting flange of the
torsion test machine. The shape of the buckled area is oblong-ellip-
tic, stretching in an oblique direction from the edge of the flange.
The buckled shape resembles a fold or rather a furrow. At the begin-
ning, one single furrow appears. Photographic reproductions of that
initial stage were unsatisfactory and have not been included in the

present report. At a later stage of buckling, one or two more
furrows of identical appearance would show up. The depth of the
furrows at that stage was sufficient to produce illumination effects

giving good photographic reproductions. The photographs included here
show a stage at which 2 furrows have been formed. The theoretical

analysis refers to the initial stage of the formation of the first
furrow.

The buckling equation gives

E hz 2-

T = 8. 583
(-v)VTWV a.

in which r is the radius of the flange bonded to the shell. For

the minor semiaxis of the elliptic furrow we have
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THE COMPLETE BUCKLING DIAGRAM IN PRESENCE OF INTERNAL PRESSURE p:

Let To be the buckling torque in absence of pressure, an& Po the exter-
nal buckling pressure in absence of a torque. The value of Po result-

ant from the present computation is

(V + VY) EfJ30 -v)V - " c-i-

The complete buckling diagram is shown in Fig. 5. It

extends over the ranges of dimensionless variables

Po <[D

in the range

00
3 -PC;

the diagram is a straight line given by

T _+ 0+ P_
To P0

in the range

<- 3PO _

the diagram is part of the ellipse

0 V3 Pt
According to this result, it is possible to make a membrane

shell torque resistant by inflating it with internal pressure. The

rectilinear part of the diagram in Fig. 5 becomes

T= ra rz p 0

for the membrane shell.

i.i'3,
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CONCLUSIONS: Based on exact methods of differential geometry and
on accepted engineering approximations in applying those methods to
shell theory, it has been possible to successfully deal with a
pressurized spherical shell buckling under action of twisting torques.
The critical relation between the values of the torque and pressure
under whose simultaneous action buckling takes place has been obtained.
Inflation of the shell by internal pressure increases the resistance
against torsional buckling.
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Figure~~~~~~ 1.Lclbcln fashria hl yfraino

Figure 2. LoaBuckling of a spherical shell by toration torquea
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Figure 3. Actual Lest photograph of a spherical shell in local
buckling under twisting torques.
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Figure 4. Actual test photograph of a spherical shell in local
buckling under twisting torques.
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